crossorigin="anonymous">

Integration Rules & Formulas

A complete reference of all essential integration rules and formulas. Master these rules to solve any integral you encounter.

Basic Integration Rules

These fundamental rules form the foundation of all integration problems.

Constant Rule

$$\int k \, dx = kx + C$$

The integral of a constant k is kx plus C.

Constant Multiple Rule

$$\int k \cdot f(x) \, dx = k \int f(x) \, dx$$

Constants can be factored out of integrals.

Sum/Difference Rule

$$\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

The integral of a sum equals the sum of integrals.

Power Rule

The most frequently used integration rule.

Power Rule

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

Special Case: n = -1

$$\int \frac{1}{x} \, dx = \int x^{-1} \, dx = \ln|x| + C$$

Examples

  • ∫ x³ dx = x⁴/4 + C
  • ∫ x⁻² dx = -x⁻¹ + C = -1/x + C
  • ∫ √x dx = ∫ x^(1/2) dx = (2/3)x^(3/2) + C

Exponential Rules

Natural Exponential

$$\int e^x \, dx = e^x + C$$

General Exponential

$$\int a^x \, dx = \frac{a^x}{\ln a} + C, \quad a > 0, a \neq 1$$

Exponential with Linear Argument

$$\int e^{ax} \, dx = \frac{e^{ax}}{a} + C$$

Logarithmic Rules

Natural Logarithm

$$\int \ln x \, dx = x \ln x - x + C$$

Logarithm Base a

$$\int \log_a x \, dx = \frac{x \ln x - x}{\ln a} + C$$

Trigonometric Rules

Essential formulas for integrating trigonometric functions.

Sine

$$\int \sin x \, dx = -\cos x + C$$

Cosine

$$\int \cos x \, dx = \sin x + C$$

Tangent

$$\int \tan x \, dx = -\ln|\cos x| + C$$

Cotangent

$$\int \cot x \, dx = \ln|\sin x| + C$$

Secant

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

Cosecant

$$\int \csc x \, dx = -\ln|\csc x + \cot x| + C$$

Secant Squared

$$\int \sec^2 x \, dx = \tan x + C$$

Cosecant Squared

$$\int \csc^2 x \, dx = -\cot x + C$$

Secant Tangent

$$\int \sec x \tan x \, dx = \sec x + C$$

Cosecant Cotangent

$$\int \csc x \cot x \, dx = -\csc x + C$$

Inverse Trigonometric Rules

Arcsine Form

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + C$$

Arctangent Form

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C$$

Arcsecant Form

$$\int \frac{1}{x\sqrt{x^2-1}} \, dx = \text{arcsec}|x| + C$$

General Arcsine

$$\int \frac{1}{\sqrt{a^2-x^2}} \, dx = \arcsin\frac{x}{a} + C$$

General Arctangent

$$\int \frac{1}{a^2+x^2} \, dx = \frac{1}{a}\arctan\frac{x}{a} + C$$

Hyperbolic Function Rules

Hyperbolic Sine

$$\int \sinh x \, dx = \cosh x + C$$

Hyperbolic Cosine

$$\int \cosh x \, dx = \sinh x + C$$

Hyperbolic Tangent

$$\int \tanh x \, dx = \ln(\cosh x) + C$$

Hyperbolic Secant²

$$\int \text{sech}^2 x \, dx = \tanh x + C$$

Special Integrals

Square Root of Sum of Squares

$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\arcsin\frac{x}{a} + C$$

Rational with Quadratic Denominator

$$\int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right| + C$$

Tips for Using These Rules

  • Always add + C for indefinite integrals
  • Simplify first before integrating when possible
  • Factor out constants to make integration easier
  • Rewrite expressions using equivalent forms that match known rules
  • Verify your answer by differentiating it

Ready to Apply These Rules?