Exercise 7.4 - Question 10

Problem

$$\int \frac{1}{\sqrt{x^2 + 2x + 2}} \, dx$$

Step-by-Step Solution

Step 1: Complete the Square

$$x^2 + 2x + 2 = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1$$

Step 2: Rewrite the Integral

$$\int \frac{1}{\sqrt{(x+1)^2 + 1}} \, dx$$

Step 3: Substitute

Let u = x + 1, then du = dx:

$$\int \frac{1}{\sqrt{u^2 + 1}} \, du$$

Step 4: Apply Standard Formula

$$\int \frac{1}{\sqrt{u^2 + 1}} \, du = \ln\left|u + \sqrt{u^2 + 1}\right| + C$$

Step 5: Substitute Back

$$= \ln\left|(x+1) + \sqrt{(x+1)^2 + 1}\right| + C$$

Simplify:

$$= \ln\left|(x+1) + \sqrt{x^2 + 2x + 2}\right| + C$$

✅ Final Answer

$$\int \frac{1}{\sqrt{x^2 + 2x + 2}} \, dx = \ln\left|(x+1) + \sqrt{x^2 + 2x + 2}\right| + C$$

Key Technique: Completing the Square

For any quadratic ax² + bx + c, complete the square to convert to (x + p)² ± q² form.