Exercise 7.4 - Question 11

Problem

$$\int \frac{1}{9x^2 + 6x + 5} \, dx$$

Step-by-Step Solution

Step 1: Complete the Square

$$9x^2 + 6x + 5 = 9\left(x^2 + \frac{2x}{3}\right) + 5$$
$$= 9\left(x^2 + \frac{2x}{3} + \frac{1}{9}\right) + 5 - 1 = 9\left(x + \frac{1}{3}\right)^2 + 4$$

Step 2: Rewrite

$$\int \frac{1}{9(x + \frac{1}{3})^2 + 4} \, dx = \frac{1}{9}\int \frac{1}{(x + \frac{1}{3})^2 + \frac{4}{9}} \, dx$$

Step 3: Let u = x + 1/3

$$= \frac{1}{9}\int \frac{1}{u^2 + (2/3)^2} \, du$$

Step 4: Apply Formula

Using ∫1/(u² + a²) du = (1/a)tan⁻¹(u/a) with a = 2/3:

$$= \frac{1}{9} \cdot \frac{3}{2}\tan^{-1}\left(\frac{3u}{2}\right) + C = \frac{1}{6}\tan^{-1}\left(\frac{3x + 1}{2}\right) + C$$

✅ Final Answer

$$\int \frac{1}{9x^2 + 6x + 5} \, dx = \frac{1}{6}\tan^{-1}\left(\frac{3x+1}{2}\right) + C$$