Exercise 7.4 - Question 13

Problem

$$\int \frac{1}{\sqrt{(x-1)(x-2)}} \, dx$$

Step-by-Step Solution

Step 1: Expand the Product

$$(x-1)(x-2) = x^2 - 3x + 2$$

Step 2: Complete the Square

$$x^2 - 3x + 2 = \left(x - \frac{3}{2}\right)^2 - \frac{9}{4} + 2 = \left(x - \frac{3}{2}\right)^2 - \frac{1}{4}$$

Step 3: Rewrite the Integral

$$\int \frac{1}{\sqrt{(x - 3/2)^2 - (1/2)^2}} \, dx$$

Step 4: Apply Standard Formula

Using ∫1/√(u² - a²) du = ln|u + √(u² - a²)| with u = x - 3/2, a = 1/2:

$$= \ln\left|x - \frac{3}{2} + \sqrt{(x-\frac{3}{2})^2 - \frac{1}{4}}\right| + C$$
$$= \ln\left|x - \frac{3}{2} + \sqrt{(x-1)(x-2)}\right| + C$$

✅ Final Answer

$$\int \frac{1}{\sqrt{(x-1)(x-2)}} \, dx = \ln\left|x - \frac{3}{2} + \sqrt{(x-1)(x-2)}\right| + C$$