Exercise 7.4 - Question 15

Problem

$$\int \frac{1}{\sqrt{(x-a)(x-b)}} \, dx$$

Step-by-Step Solution

Step 1: Expand

$$(x-a)(x-b) = x^2 - (a+b)x + ab$$

Step 2: Complete the Square

$$= \left(x - \frac{a+b}{2}\right)^2 - \frac{(a+b)^2}{4} + ab = \left(x - \frac{a+b}{2}\right)^2 - \frac{(a-b)^2}{4}$$

Step 3: Apply Standard Formula

This is of the form √(u² - c²) where u = x - (a+b)/2 and c = |a-b|/2:

$$\int \frac{1}{\sqrt{u^2 - c^2}} \, du = \ln\left|u + \sqrt{u^2 - c^2}\right| + C$$

Step 4: Substitute Back

$$= \ln\left|x - \frac{a+b}{2} + \sqrt{(x-a)(x-b)}\right| + C$$

✅ Final Answer

$$\int \frac{1}{\sqrt{(x-a)(x-b)}} \, dx = \ln\left|x - \frac{a+b}{2} + \sqrt{(x-a)(x-b)}\right| + C$$