Exercise 7.4 - Question 18

Problem

$$\int \frac{5x-2}{1 + 2x + 3x^2} \, dx$$

Step-by-Step Solution

Step 1: Express Numerator

Derivative of denominator: d/dx(1 + 2x + 3x²) = 2 + 6x

Write 5x - 2 = A(6x + 2) + B

Comparing: 6A = 5, so A = 5/6; and 2A + B = -2, so B = -2 - 10/6 = -11/3

Step 2: Split the Integral

$$\int \frac{5x-2}{1+2x+3x^2} \, dx = \frac{5}{6}\int \frac{6x+2}{1+2x+3x^2} \, dx - \frac{11}{3}\int \frac{1}{1+2x+3x^2} \, dx$$

Step 3: First Integral

Let u = 1 + 2x + 3x², du = (6x + 2)dx:

$$I_1 = \frac{5}{6}\ln|1 + 2x + 3x^2|$$

Step 4: Second Integral

Complete the square: 1 + 2x + 3x² = 3[(x + 1/3)² + 2/9]

$$I_2 = \frac{11}{3} \cdot \frac{1}{3} \cdot \frac{3}{\sqrt{2}}\tan^{-1}\left(\frac{3x+1}{\sqrt{2}}\right) = \frac{11}{3\sqrt{2}}\tan^{-1}\left(\frac{3x+1}{\sqrt{2}}\right)$$

✅ Final Answer

$$= \frac{5}{6}\ln|1+2x+3x^2| - \frac{11}{3\sqrt{2}}\tan^{-1}\left(\frac{3x+1}{\sqrt{2}}\right) + C$$