Exercise 7.4 - Question 19

Problem

$$\int \frac{6x+7}{\sqrt{(x-5)(x-4)}} \, dx$$

Step-by-Step Solution

Step 1: Expand Denominator

$$(x-5)(x-4) = x^2 - 9x + 20$$

Derivative: 2x - 9

Write 6x + 7 = A(2x - 9) + B, solving: A = 3, B = 34

Step 2: Split

$$= 3\int \frac{2x-9}{\sqrt{x^2-9x+20}} \, dx + 34\int \frac{1}{\sqrt{x^2-9x+20}} \, dx$$

Step 3: First Integral

$$I_1 = 3 \cdot 2\sqrt{x^2-9x+20} = 6\sqrt{(x-5)(x-4)}$$

Step 4: Second Integral

Complete the square: x² - 9x + 20 = (x - 9/2)² - 1/4

$$I_2 = 34\ln\left|x - \frac{9}{2} + \sqrt{(x-5)(x-4)}\right|$$

✅ Final Answer

$$= 6\sqrt{(x-5)(x-4)} + 34\ln\left|x - \frac{9}{2} + \sqrt{(x-5)(x-4)}\right| + C$$