Exercise 7.4 - Question 2

Problem

$$\int \frac{1}{\sqrt{1 + 4x^2}} \, dx$$

Step-by-Step Solution

Step 1: Identify the Form

The integrand has the form:

$$\frac{1}{\sqrt{a^2 + u^2}}$$

We need to rewrite 1 + 4x² in this standard form. Notice that:

$$1 + 4x^2 = 1 + (2x)^2$$

This suggests using u = 2x.

Step 2: Set Up the Substitution

Let:

$$u = 2x$$

Then:

$$du = 2 \, dx \quad \Rightarrow \quad dx = \frac{du}{2}$$

Step 3: Substitute

Replace 2x with u and dx with du/2:

$$\int \frac{1}{\sqrt{1 + 4x^2}} \, dx = \int \frac{1}{\sqrt{1 + u^2}} \cdot \frac{du}{2}$$

Factor out the constant:

$$= \frac{1}{2} \int \frac{1}{\sqrt{1 + u^2}} \, du$$

Step 4: Apply the Standard Formula

The standard integral formula is:

$$\int \frac{1}{\sqrt{a^2 + u^2}} \, du = \sinh^{-1}\left(\frac{u}{a}\right) + C = \ln\left|u + \sqrt{u^2 + a^2}\right| + C$$

With a = 1:

$$\int \frac{1}{\sqrt{1 + u^2}} \, du = \sinh^{-1}(u) + C = \ln\left|u + \sqrt{u^2 + 1}\right| + C$$

Step 5: Apply the Formula

$$\frac{1}{2} \int \frac{1}{\sqrt{1 + u^2}} \, du = \frac{1}{2} \sinh^{-1}(u) + C$$

Or equivalently:

$$= \frac{1}{2} \ln\left|u + \sqrt{u^2 + 1}\right| + C$$

Step 6: Substitute Back

Replace u with 2x:

$$= \frac{1}{2} \sinh^{-1}(2x) + C$$

Or in logarithmic form:

$$= \frac{1}{2} \ln\left|2x + \sqrt{4x^2 + 1}\right| + C$$

✅ Final Answer

$$\int \frac{1}{\sqrt{1 + 4x^2}} \, dx = \frac{1}{2}\sinh^{-1}(2x) + C$$

Or equivalently:

$$= \frac{1}{2}\ln\left|2x + \sqrt{1 + 4x^2}\right| + C$$

Key Concepts Used

  • Standard Form: ∫1/√(a² + u²) du = sinh⁻¹(u/a) + C
  • U-Substitution: To convert 4x² to u²
  • Equivalent Forms: sinh⁻¹(x) = ln|x + √(x² + 1)|