Exercise 7.4 - Question 20

Problem

$$\int \frac{x+2}{\sqrt{4x - x^2}} \, dx$$

Step-by-Step Solution

Step 1: Analyze

d/dx(4x - x²) = 4 - 2x = -2(x - 2)

Write x + 2 = A(-2x + 4) + B = -2Ax + 4A + B

Solving: -2A = 1, so A = -1/2; and 4A + B = 2, so B = 4

Step 2: Split

$$= -\frac{1}{2}\int \frac{4-2x}{\sqrt{4x-x^2}} \, dx + 4\int \frac{1}{\sqrt{4x-x^2}} \, dx$$

Step 3: First Integral

$$I_1 = -\frac{1}{2} \cdot 2\sqrt{4x-x^2} = -\sqrt{4x-x^2}$$

Step 4: Second Integral

Complete the square: 4x - x² = 4 - (x-2)²

$$I_2 = 4\sin^{-1}\left(\frac{x-2}{2}\right)$$

✅ Final Answer

$$= -\sqrt{4x-x^2} + 4\sin^{-1}\left(\frac{x-2}{2}\right) + C$$