Exercise 7.4 - Question 21

Problem

$$\int \frac{x+2}{\sqrt{x^2 + 2x + 3}} \, dx$$

Step-by-Step Solution

Step 1: Express Numerator

d/dx(x² + 2x + 3) = 2x + 2

Write x + 2 = A(2x + 2) + B = 2Ax + 2A + B

Solving: 2A = 1, so A = 1/2; and 2A + B = 2, so B = 1

Step 2: Split

$$= \frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}} \, dx + \int \frac{1}{\sqrt{x^2+2x+3}} \, dx$$

Step 3: First Integral

$$I_1 = \frac{1}{2} \cdot 2\sqrt{x^2+2x+3} = \sqrt{x^2+2x+3}$$

Step 4: Second Integral

Complete the square: x² + 2x + 3 = (x+1)² + 2

$$I_2 = \ln\left|(x+1) + \sqrt{x^2+2x+3}\right|$$

✅ Final Answer

$$= \sqrt{x^2+2x+3} + \ln\left|(x+1) + \sqrt{x^2+2x+3}\right| + C$$