Exercise 7.4 - Question 22

Problem

$$\int \frac{x+3}{x^2 - 2x - 5} \, dx$$

Step-by-Step Solution

Step 1: Express Numerator

d/dx(x² - 2x - 5) = 2x - 2

Write x + 3 = A(2x - 2) + B

Solving: 2A = 1, so A = 1/2; and -2A + B = 3, so B = 4

Step 2: Split

$$= \frac{1}{2}\int \frac{2x-2}{x^2-2x-5} \, dx + 4\int \frac{1}{x^2-2x-5} \, dx$$

Step 3: First Integral

$$I_1 = \frac{1}{2}\ln|x^2-2x-5|$$

Step 4: Second Integral

Complete the square: x² - 2x - 5 = (x-1)² - 6

$$I_2 = 4 \cdot \frac{1}{2\sqrt{6}}\ln\left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|$$

✅ Final Answer

$$= \frac{1}{2}\ln|x^2-2x-5| + \frac{2}{\sqrt{6}}\ln\left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right| + C$$