Exercise 7.4 - Question 24 (MCQ)

Problem

$$\int \frac{dx}{x^2 + 2x + 2} \text{ equals}$$

(A) x tan⁻¹(x + 1) + C

(B) tan⁻¹(x + 1) + C

(C) (x + 1) tan⁻¹x + C

(D) tan⁻¹x + C

Step-by-Step Solution

Step 1: Complete the Square

$$x^2 + 2x + 2 = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1^2$$

Step 2: Rewrite the Integral

$$\int \frac{1}{(x+1)^2 + 1} \, dx$$

Step 3: Substitute

Let u = x + 1, then du = dx:

$$\int \frac{1}{u^2 + 1} \, du$$

Step 4: Apply Standard Formula

$$\int \frac{1}{u^2 + 1} \, du = \tan^{-1}(u) + C = \tan^{-1}(x + 1) + C$$

✅ Answer: (B) tan⁻¹(x + 1) + C

$$\int \frac{dx}{x^2 + 2x + 2} = \tan^{-1}(x + 1) + C$$