Exercise 7.4 - Question 25 (MCQ)

Problem

$$\int \frac{dx}{\sqrt{9x - 4x^2}} \text{ equals}$$

(A) (1/9)sin⁻¹((9x-8)/8) + C

(B) (1/2)sin⁻¹((8x-9)/9) + C

(C) (1/3)sin⁻¹((9x-8)/8) + C

(D) (1/2)sin⁻¹((9x-8)/9) + C

Step-by-Step Solution

Step 1: Factor Out

$$9x - 4x^2 = -4\left(x^2 - \frac{9x}{4}\right) = -4\left[\left(x - \frac{9}{8}\right)^2 - \frac{81}{64}\right]$$
$$= \frac{81}{16} - 4\left(x - \frac{9}{8}\right)^2 = \left(\frac{9}{4}\right)^2 - (2x - \frac{9}{4})^2$$

Step 2: Simplify

$$\sqrt{9x - 4x^2} = \sqrt{\frac{81}{16} - \left(x - \frac{9}{8}\right)^2 \cdot 4}$$

Step 3: Substitute and Apply Formula

Let u = x - 9/8, the integral becomes:

$$\int \frac{1}{\sqrt{(9/4)^2 - (2u)^2}} \, du = \frac{1}{2}\sin^{-1}\left(\frac{2u}{9/4}\right) + C$$
$$= \frac{1}{2}\sin^{-1}\left(\frac{8x - 9}{9}\right) + C$$

✅ Answer: (B) (1/2)sin⁻¹((8x-9)/9) + C

$$\int \frac{dx}{\sqrt{9x - 4x^2}} = \frac{1}{2}\sin^{-1}\left(\frac{8x-9}{9}\right) + C$$