Exercise 7.4 - Question 3

Problem

$$\int \frac{1}{\sqrt{(2-x)^2 + 1}} \, dx$$

Step-by-Step Solution

Step 1: Identify the Form

The integrand has the form:

$$\frac{1}{\sqrt{u^2 + a^2}}$$

where u = (2 - x) and a = 1.

Step 2: Set Up the Substitution

Let:

$$u = 2 - x$$

Then:

$$\frac{du}{dx} = -1 \quad \Rightarrow \quad du = -dx$$

Therefore:

$$dx = -du$$

Step 3: Substitute into the Integral

Replace (2 - x) with u and dx with -du:

$$\int \frac{1}{\sqrt{(2-x)^2 + 1}} \, dx = \int \frac{1}{\sqrt{u^2 + 1}} \cdot (-du)$$

Factor out the negative sign:

$$= -\int \frac{1}{\sqrt{u^2 + 1}} \, du$$

Step 4: Apply the Standard Formula

The standard integral is:

$$\int \frac{1}{\sqrt{u^2 + 1}} \, du = \sinh^{-1}(u) + C = \ln\left|u + \sqrt{u^2 + 1}\right| + C$$

Applying this:

$$-\int \frac{1}{\sqrt{u^2 + 1}} \, du = -\sinh^{-1}(u) + C$$

Step 5: Substitute Back

Replace u with (2 - x):

$$= -\sinh^{-1}(2-x) + C$$

Or in logarithmic form:

$$= -\ln\left|(2-x) + \sqrt{(2-x)^2 + 1}\right| + C$$

✅ Final Answer

$$\int \frac{1}{\sqrt{(2-x)^2 + 1}} \, dx = -\sinh^{-1}(2-x) + C$$

Or equivalently:

$$= -\ln\left|(2-x) + \sqrt{(2-x)^2 + 1}\right| + C$$

Key Concepts Used

  • U-Substitution: u = 2 - x leads to du = -dx
  • Standard Form: ∫1/√(u² + 1) du = sinh⁻¹(u) + C
  • Negative Sign: Comes from the derivative of (2 - x)