Exercise 7.4 - Question 4

Problem

$$\int \frac{1}{\sqrt{9 - 25x^2}} \, dx$$

Step-by-Step Solution

Step 1: Identify the Form

This is of the form:

$$\frac{1}{\sqrt{a^2 - u^2}}$$

We need to rewrite 9 - 25x² in this form.

Step 2: Rewrite the Expression

Factor out constants:

$$9 - 25x^2 = 9\left(1 - \frac{25x^2}{9}\right) = 9\left(1 - \left(\frac{5x}{3}\right)^2\right)$$

So:

$$\sqrt{9 - 25x^2} = 3\sqrt{1 - \left(\frac{5x}{3}\right)^2}$$

Step 3: Set Up Substitution

Let:

$$u = \frac{5x}{3}$$

Then:

$$du = \frac{5}{3}dx \quad \Rightarrow \quad dx = \frac{3}{5}du$$

Step 4: Substitute

$$\int \frac{1}{3\sqrt{1 - u^2}} \cdot \frac{3}{5}du = \frac{1}{5}\int \frac{1}{\sqrt{1 - u^2}} \, du$$

Step 5: Apply Standard Formula

The standard formula is:

$$\int \frac{1}{\sqrt{1 - u^2}} \, du = \sin^{-1}(u) + C$$

Therefore:

$$\frac{1}{5}\int \frac{1}{\sqrt{1 - u^2}} \, du = \frac{1}{5}\sin^{-1}(u) + C$$

Step 6: Substitute Back

Replace u with 5x/3:

$$= \frac{1}{5}\sin^{-1}\left(\frac{5x}{3}\right) + C$$

✅ Final Answer

$$\int \frac{1}{\sqrt{9 - 25x^2}} \, dx = \frac{1}{5}\sin^{-1}\left(\frac{5x}{3}\right) + C$$

Key Concepts Used

  • Standard Form: ∫1/√(a² - u²) du = sin⁻¹(u/a) + C
  • Factoring: Extracting constants to match standard form