Exercise 7.4 - Question 5

Problem

$$\int \frac{3x}{1 + 2x^4} \, dx$$

Step-by-Step Solution

Step 1: Analyze the Structure

Rewrite the denominator:

$$1 + 2x^4 = 1 + (\sqrt{2}x^2)^2$$

This suggests substituting u = √2 x²

Step 2: Set Up Substitution

Let:

$$u = \sqrt{2}x^2$$

Then:

$$du = 2\sqrt{2}x \, dx \quad \Rightarrow \quad x \, dx = \frac{du}{2\sqrt{2}}$$

Step 3: Substitute

Note that 2x⁴ = u², so 1 + 2x⁴ = 1 + u²

$$\int \frac{3x}{1 + 2x^4} \, dx = 3\int \frac{x \, dx}{1 + u^2}$$
$$= 3\int \frac{1}{1 + u^2} \cdot \frac{du}{2\sqrt{2}} = \frac{3}{2\sqrt{2}}\int \frac{1}{1 + u^2} \, du$$

Step 4: Apply Standard Formula

$$\int \frac{1}{1 + u^2} \, du = \tan^{-1}(u) + C$$

So:

$$\frac{3}{2\sqrt{2}}\int \frac{1}{1 + u^2} \, du = \frac{3}{2\sqrt{2}}\tan^{-1}(u) + C$$

Step 5: Substitute Back

Replace u with √2 x²:

$$= \frac{3}{2\sqrt{2}}\tan^{-1}(\sqrt{2}x^2) + C$$

✅ Final Answer

$$\int \frac{3x}{1 + 2x^4} \, dx = \frac{3}{2\sqrt{2}}\tan^{-1}(\sqrt{2}x^2) + C$$