Exercise 7.4 - Question 6

Problem

$$\int \frac{x^2}{1 - x^6} \, dx$$

Step-by-Step Solution

Step 1: Recognize the Pattern

Notice that:

$$1 - x^6 = 1 - (x^3)^2$$

And the derivative of x³ is 3x², which relates to our numerator x².

Step 2: Set Up Substitution

Let:

$$u = x^3$$

Then:

$$du = 3x^2 \, dx \quad \Rightarrow \quad x^2 \, dx = \frac{du}{3}$$

Step 3: Substitute

$$\int \frac{x^2}{1 - x^6} \, dx = \int \frac{1}{1 - u^2} \cdot \frac{du}{3} = \frac{1}{3}\int \frac{1}{1 - u^2} \, du$$

Step 4: Apply Standard Formula

The standard formula for this form is:

$$\int \frac{1}{1 - u^2} \, du = \frac{1}{2}\ln\left|\frac{1 + u}{1 - u}\right| + C$$

Therefore:

$$\frac{1}{3}\int \frac{1}{1 - u^2} \, du = \frac{1}{3} \cdot \frac{1}{2}\ln\left|\frac{1 + u}{1 - u}\right| + C$$
$$= \frac{1}{6}\ln\left|\frac{1 + u}{1 - u}\right| + C$$

Step 5: Substitute Back

Replace u with x³:

$$= \frac{1}{6}\ln\left|\frac{1 + x^3}{1 - x^3}\right| + C$$

✅ Final Answer

$$\int \frac{x^2}{1 - x^6} \, dx = \frac{1}{6}\ln\left|\frac{1 + x^3}{1 - x^3}\right| + C$$