Exercise 7.4 - Question 8

Problem

$$\int \frac{x^2}{\sqrt{x^6 + a^6}} \, dx$$

Step-by-Step Solution

Step 1: Recognize the Pattern

Notice that x⁶ + a⁶ = (x³)² + (a³)² and the derivative of x³ is 3x².

Step 2: Substitute

Let u = x³, then du = 3x² dx, so x² dx = du/3:

$$\int \frac{x^2}{\sqrt{x^6 + a^6}} \, dx = \frac{1}{3}\int \frac{du}{\sqrt{u^2 + a^6}}$$

Step 3: Apply Standard Formula

$$\int \frac{1}{\sqrt{u^2 + b^2}} \, du = \ln\left|u + \sqrt{u^2 + b^2}\right| + C$$

With b = a³:

$$= \frac{1}{3}\ln\left|u + \sqrt{u^2 + a^6}\right| + C$$

Step 4: Substitute Back

$$= \frac{1}{3}\ln\left|x^3 + \sqrt{x^6 + a^6}\right| + C$$

✅ Final Answer

$$\int \frac{x^2}{\sqrt{x^6 + a^6}} \, dx = \frac{1}{3}\ln\left|x^3 + \sqrt{x^6 + a^6}\right| + C$$