Exercise 7.4 - Question 9

Problem

$$\int \frac{\sec^2 x}{\sqrt{\tan^2 x + 4}} \, dx$$

Step-by-Step Solution

Step 1: Identify the Substitution

Notice that sec²x is the derivative of tan x.

Let u = tan x, then du = sec²x dx

Step 2: Substitute

$$\int \frac{\sec^2 x}{\sqrt{\tan^2 x + 4}} \, dx = \int \frac{du}{\sqrt{u^2 + 4}}$$

Step 3: Apply Standard Formula

Using the formula ∫1/√(u² + a²) du = ln|u + √(u² + a²)| + C with a = 2:

$$\int \frac{du}{\sqrt{u^2 + 4}} = \ln\left|u + \sqrt{u^2 + 4}\right| + C$$

Step 4: Substitute Back

$$= \ln\left|\tan x + \sqrt{\tan^2 x + 4}\right| + C$$

✅ Final Answer

$$\int \frac{\sec^2 x}{\sqrt{\tan^2 x + 4}} \, dx = \ln\left|\tan x + \sqrt{\tan^2 x + 4}\right| + C$$