Exercise 7.4 - Question 16

Problem

$$\int \frac{4x+1}{\sqrt{2x^2 + x - 3}} \, dx$$

Step-by-Step Solution

Step 1: Express Numerator in Terms of Derivative

d/dx(2x² + x - 3) = 4x + 1

Notice: The numerator IS exactly the derivative of the expression under the root!

Step 2: Use Substitution

Let u = 2x² + x - 3, then du = (4x + 1)dx

$$\int \frac{4x+1}{\sqrt{2x^2 + x - 3}} \, dx = \int \frac{du}{\sqrt{u}}$$

Step 3: Integrate

$$\int u^{-1/2} \, du = 2u^{1/2} + C = 2\sqrt{u} + C$$

Step 4: Substitute Back

$$= 2\sqrt{2x^2 + x - 3} + C$$

✅ Final Answer

$$\int \frac{4x+1}{\sqrt{2x^2 + x - 3}} \, dx = 2\sqrt{2x^2 + x - 3} + C$$