Exercise 7.4 - Question 17

Problem

$$\int \frac{x+2}{\sqrt{x^2 - 1}} \, dx$$

Step-by-Step Solution

Step 1: Split the Integral

$$\int \frac{x+2}{\sqrt{x^2 - 1}} \, dx = \int \frac{x}{\sqrt{x^2 - 1}} \, dx + 2\int \frac{1}{\sqrt{x^2 - 1}} \, dx$$

Step 2: First Integral (I₁)

For ∫x/√(x²-1) dx, let u = x² - 1, du = 2x dx:

$$I_1 = \frac{1}{2}\int \frac{du}{\sqrt{u}} = \sqrt{u} = \sqrt{x^2 - 1}$$

Step 3: Second Integral (I₂)

$$I_2 = 2\int \frac{1}{\sqrt{x^2 - 1}} \, dx = 2\ln\left|x + \sqrt{x^2 - 1}\right|$$

Step 4: Combine

$$= \sqrt{x^2 - 1} + 2\ln\left|x + \sqrt{x^2 - 1}\right| + C$$

✅ Final Answer

$$\int \frac{x+2}{\sqrt{x^2 - 1}} \, dx = \sqrt{x^2 - 1} + 2\ln\left|x + \sqrt{x^2 - 1}\right| + C$$