Exercise 7.4 - Question 23

Problem

$$\int \frac{5x+3}{\sqrt{x^2 + 4x + 10}} \, dx$$

Step-by-Step Solution

Step 1: Express Numerator

d/dx(x² + 4x + 10) = 2x + 4

Write 5x + 3 = A(2x + 4) + B

Solving: 2A = 5, so A = 5/2; and 4A + B = 3, so B = -7

Step 2: Split

$$= \frac{5}{2}\int \frac{2x+4}{\sqrt{x^2+4x+10}} \, dx - 7\int \frac{1}{\sqrt{x^2+4x+10}} \, dx$$

Step 3: First Integral

$$I_1 = \frac{5}{2} \cdot 2\sqrt{x^2+4x+10} = 5\sqrt{x^2+4x+10}$$

Step 4: Second Integral

Complete the square: x² + 4x + 10 = (x+2)² + 6

$$I_2 = 7\ln\left|(x+2) + \sqrt{x^2+4x+10}\right|$$

✅ Final Answer

$$= 5\sqrt{x^2+4x+10} - 7\ln\left|(x+2) + \sqrt{x^2+4x+10}\right| + C$$