Exercise 7.4 - Question 7

Problem

$$\int \frac{x-1}{\sqrt{x^2 - 1}} \, dx$$

Step-by-Step Solution

Step 1: Split the Integral

$$\int \frac{x-1}{\sqrt{x^2 - 1}} \, dx = \int \frac{x}{\sqrt{x^2 - 1}} \, dx - \int \frac{1}{\sqrt{x^2 - 1}} \, dx$$

Step 2: Solve First Integral

For ∫x/√(x²-1) dx, let u = x² - 1, then du = 2x dx:

$$\int \frac{x}{\sqrt{x^2 - 1}} \, dx = \frac{1}{2}\int \frac{du}{\sqrt{u}} = \frac{1}{2} \cdot 2\sqrt{u} = \sqrt{x^2 - 1}$$

Step 3: Solve Second Integral

The second is a standard form:

$$\int \frac{1}{\sqrt{x^2 - 1}} \, dx = \ln\left|x + \sqrt{x^2 - 1}\right| + C$$

Step 4: Combine Results

$$= \sqrt{x^2 - 1} - \ln\left|x + \sqrt{x^2 - 1}\right| + C$$

✅ Final Answer

$$\int \frac{x-1}{\sqrt{x^2 - 1}} \, dx = \sqrt{x^2 - 1} - \ln\left|x + \sqrt{x^2 - 1}\right| + C$$